Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(1): 32, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057660

RESUMEN

Para-amino salicylic acid (PAS) was first reported by Lehmann in 1946 and used for tuberculosis treatment. However, due to its adverse effects, it is now used only as a second line anti-tuberculosis drug for treatment of multidrug resistant or extensively drug resistant M. tuberculosis. The structure of PAS is similar to para-amino benzoic acid (pABA), an intermediate metabolite in the folate synthesis pathway. The study has identified mutations in genes in folate pathway and their intergenic regions for their possibilities in responsible for PAS resistance. Genomic DNA from 120 PAS-resistant and 49 PAS-sensitive M. tuberculosis isolated from tuberculosis patients in Thailand were studied by whole genome sequencing. Twelve genes in the folate synthesis pathway were investigated for variants associated with PAS resistance. Fifty-one SNVs were found in nine genes and their intergenic regions (pabC, pabB, folC, ribD, thyX, dfrA, thyA, folK, folP). Functional correlation test confirmed mutations in RibD, ThyX, and ThyA are responsible for PAS resistance. Detection of mutation in thyA, folC, intergenic regions of thyX, ribD, and double deletion of thyA dfrA are proposed for determination of PAS resistant M. tuberculosis.


Asunto(s)
Ácido Aminosalicílico , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Tailandia , Farmacorresistencia Bacteriana , Ácido Aminosalicílico/farmacología , Tuberculosis/genética , Antituberculosos/farmacología , Mycobacterium tuberculosis/genética , Mutación , Ácido Fólico/farmacología , Secuenciación Completa del Genoma , ADN Intergénico , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/genética
2.
Fitoterapia ; 169: 105597, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37380134

RESUMEN

The isolation of lanostane triterpenoids possessing significant anti-tuberculosis (anti-TB) activity from mycelial cultures of the basidiomycete Ganoderma australe strain TBRC-BCC 22314 was previously reported. To demonstrate the potential of the dried mycelial powder for utilization in anti-TB medicinal products, its authentic chemical analysis was performed. Considering the possibility of the changes in the lanostane compositions and anti-TB activity by sterilization, both autoclave treated and non-autoclaved mycelial powder materials were chemically investigated. The study led to the identification of the lanostanes responsible for the activity of the mycelial extract against Mycobacterium tuberculosis H37Ra. The anti-TB activity of the extracts from autoclaved and non-autoclaved mycelial powders were the same (MIC 3.13 µg/mL). However, the analytical results revealed several unique chemical conversions of the lanostanes under the sterilization conditions. The most potent major lanostane, ganodermic acid S (1), was shown to be significantly active also against the extensively drug-resistant (XDR) strains of M. tuberculosis.


Asunto(s)
Ganoderma , Mycobacterium tuberculosis , Polvos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Antituberculosos/farmacología , Ganoderma/química
3.
BMC Complement Med Ther ; 21(1): 231, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517853

RESUMEN

BACKGROUND: Neorautanenia mitis, Hydnora abyssinica, and Senna surattensis are medicinal plants with a variety of traditional uses. In this study, we sought to isolate the bioactive compounds responsible for some of these activities, and to uncover their other potential medicinal properties. METHODS: The DCM and ethanol extracts of the roots of N. mitis and H. abyssinica, and the leaves of S. surattensis were prepared and their phytochemical components were isolated and purified using chromatographic methods. These extracts and their pure phytochemical components were evaluated in in-vitro models for their inhibitory activities against Plasmodium falciparum, Trypanosoma brucei rhodesiense, Mycobacterium tuberculosis, α-amylase (AA), and α-glucosidase (AG). RESULTS: Rautandiol B had significant inhibitory activities against two strains of Plasmodium falciparum showing a high safety ratio (SR) and IC50 values of 0.40 ± 0.07 µM (SR - 108) and 0.74 ± 0.29 µM (SR - 133) against TM4/8.2 and K1CB1, respectively. While (-)-2-isopentenyl-3-hydroxy-8-9-methylenedioxypterocarpan showed the highest inhibitory activity against T. brucei rhodesiense with an IC50 value of 4.87 ± 0.49 µM (SR > 5.83). All crude extracts showed inhibitory activities against AA and AG, with three of the most active phytochemical components; rautandiol A, catechin, and dolineon, having only modest activities against AG with IC50 values of 0.28 mM, 0.36 mM and 0.66 mM, respectively. CONCLUSION: These studies have led to the identification of lead compounds with potential for future drug development, including Rautandiol B, as a potential lead compound against Plasmodium falciparum. The relatively higher inhibitory activities of the crude extracts against AG and AA over their isolated components could be due to the synergistic effects between their phytochemical components. These crude extracts could potentially serve as alternative inhibitors of AG and AA and as therapeutics for diabetes.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Fabaceae/química , Malaria Falciparum/tratamiento farmacológico , Pterocarpanos/farmacología , Pterocarpanos/uso terapéutico , Senna/química , Humanos , Medicina Tradicional/métodos , Medicina Tradicional/estadística & datos numéricos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Raíces de Plantas/química , Plantas Medicinales/química , Plasmodium falciparum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA